Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Formulation and development of colon-targeted mucopenetrating metronidazole nanoparticles

Sukhbir Kaur1,2 , R K Narang1, Geeta Aggarwal3

1Department of Pharmaceutics, ISF College of Pharmacy, Moga; 2IKG Punjab Technical University, Jalandhar; 3Rayatand Bahra Institute of Pharmacy, Mohali, Punjab, India.

For correspondence:-  Sukhbir Kaur   Email: k_sukhbir@yahoo.co.in

Received: 24 December 2016        Accepted: 21 April 2017        Published: 29 May 2017

Citation: Kaur S, Narang RK, Aggarwal G. Formulation and development of colon-targeted mucopenetrating metronidazole nanoparticles. Trop J Pharm Res 2017; 16(5):967-973 doi: 10.4314/tjpr.v16i5.1

© 2017 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To formulation and develop colon-targeted mucopenetrating metronidazole nanoparticles.
Methods: Metronidazole-loaded chitosan nanoparticles with a pH-sensitive polymer, hydroxyl propyl methyl cellulose phthalate (HPMCP), were prepared by ionic gelation technique and then coated with Eudragit S100 by solvent evaporation method. The nanoparticles were optimized using one variable at a time (OVAT) approach. Further, the nanoparticles were evaluated by scanning electron microscopy (SEM) and zeta sizer, as well as for in-vitro release. Muco-adhesion was evaluated by modified bioadhesion detachment force measurement balance and muco-penetration of fluorescein isothiocyanate (FITC) labeled optimized nanoparticles was determined by microscopic technique
Results: Morphological assessment results revealed smooth, spherical particles with homogeneous distribution and polydispersity index (PDI) of 0.213. The optimized formulation showed particle size of 202 ± 27 nm, zeta potential of 26.9 ± 2.4 mV as well as and entrapment efficiency of 79 ± 5.4 %. There was significant difference in drug release between coated (8.46 ± 2.49 %) and uncoated (28.96 ± 4.04 %) nanoparticles at the 5th h in simulated gastric conditions. Muco-adhesion data revealed that uncoated nanoparticles (14.98 x 103 dyne/cm2) showed higher muco-adhesion detachment force compared to coated (12.34 x 103 dyne/cm2) nanoparticles. Muco-penetration results confirm the retention (for up to 12 h) of the developed formulation at the target site for enhanced therapeutic exposure of the entrapped drug.  
Conclusion: Eudragit S100 coating of chitosan-HPMCP nanoparticles promotes efficient drug targeting and thus provides a strategy for treating mucosal infections

Keywords: Metronidazole, pH-sensitive nanoparticles, Hydroxylpropyl methylcellulose phthalate, Ionic gelation, Mucoadhesion, Mucopenetration, Intestinal infecti

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates